Article 6118

Title of the article

A NUMERICAL RESEARCH OF A PROPER WAVE SPECTRUM OF AN ANISOTROPIC DIELECTRIC WAVEGUIDE 

Authors

Smol'kin Evgeniy Yur'evich, Candidate of physical and mathematical sciences, research assistant, the research center “Supercomputer modeling in electrodynamics”, Penza State University (40 Krasnaya street, Penza, Russia), e.g.smolkin@hotmail.com
Snegur Maksim Olegovich, Student, Penza State University (40 Krasnaya street, Penza, Russia), snegur.max15@gmail.com

Index UDK

517.958;621.372.8

DOI

10.21685/2072-3040-2018-1-6

Abstract

Background. The aim of this work is to study the spectrum of the problem of propagating electromagnetic waves of an anisotropic dielectric waveguide with a circular cross section.
Materials and methods. To determine the solution, we use the variational formulation of the problem. The physical problem is reduced to solving the eigenvalue problem for a system of ordinary differential equations. To find the numerical solution of the problem, we use the Galerkin method with the use of finite piecewise linear basis functions.
Results. A numerical method for solving the problem of propagation of normal waves of an anisotropic dielectric waveguide with a circular cross-section was developed and implemented; a number of numerical experiments were carried out.
Conclusion. The proposed numerical method is an effective way of finding an approximate solution to the problem of propagation of electromagnetic waves.

Key words

problem of propagation of electromagnetic waves, anisotropic dielectric waveguide with circular cross section, Maxwell's equation, differential equations, variational formulation, Sobolev spaces, Galerkin method

 Download PDF
References

1. Smol'kin E. Yu., Snegur M. O. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2017, no. 2 (42), pp. 32–43.
2. Smirnov Yu. G., Smol'kin E. Yu., Snegur M. O. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2017, no. 3 (43), pp. 50–64.
3. Lifante G., Cusso F., Cantelar E. International Conference on Mathematical Methods in Electromagnetic Theory. Kharkiv, 2006, pp. 77–82.
4. Saad S. M. IEEE Transactions on Microwave Theory and Techniques. 1985, vol. 33, no. 10, pp. 894–899.
5. Baumert J. C., Hoffnagle J. Journal of Lightwave Technology. 1993, vol. 4, no. 11, pp. 1626–1630.
6. Smol'kin E. Yu., Snegur M. O., Khorosheva E. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2017, no. 4 (44), pp. 76–86.
7. Smirnov Yu. G. Matematicheskie metody issledovaniya zadach elektrodinamiki [Mathematical methods of electrodynmic problems researching]. Penza: Inf.-izd. tsentr PenzGU, 2009.
8. Lu M., Fejer M. M. J. Opt. Soc. Am. A. 1992, vol. 10, no. 2, pp. 246–261.

 

Дата создания: 13.06.2018 13:35
Дата обновления: 28.08.2018 13:44